Date:23-06-2022

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (OLD) EXAMINATION – SUMMER 2022

Subject Code:140001

Subject Name: Mathematics-IV

Time:10:30 AM TO 01:30 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

	4.	Simple and non-programmable scientific calculators are allowed.	
Q.1	(a)	Find and graph all sixth roots of unity.	07
	(b)	Expand $f(z) = \frac{1}{(z+2)(z+4)}$ valid for the region (i) $ z < 2$ (ii) $2 < z < 4$	07
		(iii) $ z > 4$.	
		-Z	~-
Q.2	(a)	Using the residue theorem, evaluate $\int_C \frac{e^z + z}{z^3 - z} dz$, where $C: z = \frac{\pi}{2}$	07
	(b)	If $f(z) = u + iv$ is analytic in domain D then prove that	07
		$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) Ref(z) ^2 = 2 f'(z) ^2.$	
	.	OR G	~ -
	(b)	Evaluate $\int_C \bar{z} dz$, where C is along the sides of the triangle having vertices	07
		z = 0, 1, i.	
Q.3	(a)	Explain bisection method for solution of equation using this method find the	07
C ¹²	()	approximate solution of $x^3 - x + 1 = 0$ correct up to three decimal points.	
	(b)	Apply fourth order Ronge-kutta method to find $y(0.2)$ given	07
		$\frac{dy}{dx} = x + y, y(0) = 1.$ (Taking $h = 0.1$)	
		OR	
Q.3	(a)	State Trace Trace of a local rule with n = 10 and using it, evaluate $\int_0^1 2e^x dx$	07
	(b)	Expanse $\frac{1}{z(z^2-3z+2)}$ about $z = 0$, for the regions	07
		(i) $1 < z < 2$ (ii) $ z > 2$.	
Q.4	(a)	Solve the following system of equations using Gauss seidel method:	07
		5x + y - z = 10; 2x + 4y + z = 14; x + y + 8z = 20	05
	(b)	Find the bilinear transformations which maps the points 1, -1, ∞ onto the points $1 + i$, $1 - i$, 1 respectively. Also, find its fixed points.	07
		OR	
Q.4	(a)	Determine the polynomial by Newton's forward difference formula from the	07
		following table:	
		X: 0 1 2 3 4 Y: -10 -8 -8 -4 40	
		1: -10 -6 -6 -4 40 Also find y when x = 1.5	
	(b)	Evaluate $\int_{0.2}^{1.4} (sinx - logx + e^x) dx$ with h=0.2 by simpson's 1/3 rd and 3/8 th	07

(b) Evaluate $\int_{0.2}^{1.4} (sinx - logx + e^x) dx$ with h=0.2 by simpson's $1/3^{rd}$ and $3/8^{th}$ 07 rule.

1

Download all NOTES and PAPERS at StudentSuvidha.com

Q.5	(a)	Find a real root of $xe^x = 2$, correct up three decimal places, by using	07
		Newton-raphson method	
	(b)	Evaluate following integrals using residue:	07
		$\oint_{C} \frac{2z^2+3}{z(z+1)(z+2)} dz$, where C: $ z =1.6$	
		OR	
Q.5	(a)	Find the analytic function $f(z) = u + iv$, if $u - v = e^x(cosy - siny)$	07

(b) Apply Gauss Jacobi method to solve system of linear equation as under: 07

$$20x + 2y + z = 30x - 40y - 3z = -752x - y + 10z = 30$$

inmant cuidha.com

Download all NOTES and PAPERS at StudentSuvidha.com