$\qquad$
$\qquad$

## GUJARAT TECHNOLOGICAL UNIVERSITY <br> BE - SEMESTER-IV (OLD) EXAMINATION - SUMMER 2022

Subject Code:140001
Date:23-06-2022
Subject Name:Mathematics-IV
Time:10:30 AM TO 01:30 PM
Total Marks: 70

## Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.
Q. 1 (a) Find and graph all sixth roots of unity.
(b) Expand $f(z)=\frac{1}{(z+2)(z+4)}$ vaild for the region (i) $|z|<2$ (ii) $2<|z|<4$ (iii) $|z|>4$.
Q. 2 (a) Using the residue theorem, evaluate $\int_{C} \frac{e^{z}+z}{z^{3}-z} d z$, where $C:|z|=\frac{\pi}{2}$
(b) If $f(z)=u+i v$ is analytic in domain D then prove that $\qquad$
$\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|\operatorname{Ref}(z)|^{2}=2\left|f^{\prime}(z)\right|^{2}$.

## OR

(b) Evaluate $\int_{C} \bar{z} d z$, where $C$ is along the sides of the triangle having vertices $z=0,1, i$.
Q. 3 (a) Explain bisection method for solution of equation using this method find the approximate solution of $x^{3}-x+1=0$ correct up to three decimal points.
(b) Apply fourth order R thge-kutta method to find $y(0.2)$ given
$\frac{d y}{d x}=x+y, y(0,1 . \quad($ Taking $h=0.1)$

## OR

Q. 3 (a) State Tráczoidal rule with $\mathrm{n}=10$ and using it, evaluate $\int_{0}^{1} 2 e^{x} d x \quad 07$
(b) Expaifa $\frac{1}{z\left(z^{2}-3 z+2\right)}$ about $z=0$, for the regions 07
(i) $1<|z|<2$ (ii) $|z|>2$.
Q. 4 (a) Solve the following system of equations using Gauss seidel method:
$5 x+y-z=10 ; 2 x+4 y+z=14 ; x+y+8 z=20$
(b) Find the bilinear transformations which maps the points $1,-1, \infty$ onto the
points $1+i, 1-i, 1$ respectively. Also, find its fixed points.
OR
Q. 4 (a) Determine the polynomial by Newton's forward difference formula from the
following table:

| $\mathrm{X}:$ | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{Y}:$ | -10 | -8 | -8 | -4 | 40 |

Also find y when $\mathrm{x}=1.5$
(b) Evaluate $\int_{0.2}^{1.4}\left(\sin x-\log x+e^{x}\right) d x$ with $\mathrm{h}=0.2$ by simpson's $1 / 3^{\text {rd }}$ and $3 / 8^{\text {th }} \quad \mathbf{0 7}$ rule.
Q. 5 (a) Find a real root of $x e^{x}=2$, correct up three decimal places, by using
(b) Evaluate following integrals using residue:
$\oint_{c} \frac{2 z^{2}+3}{z(z+1)(z+2)} d z$, where $\mathrm{C}:|\mathrm{z}|=1.6$

## OR

Q. 5 (a) Find the analytic function $f(z)=u+i v$, if $u-v=e^{x}(\cos y-\sin y)$
(b) Apply Gauss Jacobi method to solve system of linear equation as under:

$$
\begin{gathered}
20 x+2 y+z=30 \\
x-40 y-3 z=-75 \\
2 x-y+10 z=30
\end{gathered}
$$

